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Abstract

This paper introduces a new estimation method of Luby-Racko�'s
pseudorandomness and maximum average of di�erential probability
of block ciphers with SPN(Substitution and Permutation Network)-
structures like E2. In this paper, we analyze the pseudorandomness of
the SPN-structure and E2-like transformations and show that this can
be easily calculated by simple matrix calculation, and clarify that the
linear transformation used in E2 o�ers good pseudorandomness. More-
over, we examine the maximum average of the di�erential probability
of the SPN-structure. We show that this can be calculated recursively
by a novel calculation method and con�rm that the linear transforma-
tion used in E2 o�ers good immunity for di�erential attacks when used
in the 4-round SPN-structure.

keywords. E2, E2-like transformation, SPN-structure, maximum aver-
age of di�erential probability, pseudorandomness

1 Introduction

In this paper, we analyze security of block ciphers with SPN(Substitution
and Permutation Network)-structures like E2. We consider two de�nitions of
security - Luby-Racko�'s pseudorandomness and maximum average of di�er-
ential probability. We introduce a new estimation method of Luby-Racko�'s
pseudorandomness and maximum average of di�erential probability of block
ciphers with SPN(Substitution and Permutation Network)-structures like
E2.

The notion of a pseudorandom function generator (PRFG) was intro-
duced by Goldreich, Goldwasser and Micali in [GGM84] who showed how to
e�ciently construct a pseudorandom function generator from a pseudoran-
dom bit generator. In [LR86], Luby and Racko� de�ned a pseudorandom
invertible permutation generator (PRPG). Using ideas behind the design
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of the Data Encryption Standard, they showed how to e�ciently construct
a pseudorandom invertible permutation generator from an pseudorandom
function generator. A practical implication of their result is that any pseu-
dorandom function generator can be used to construct a block private key
cryptosystem that is secure against chosen plaintext attack, which is one of
the strongest known attacks against a cryptosystem. They also de�ned a
generalized pseudorandom function, i.e. (n;m; k; �) - pseudorandom func-
tion (PRF). They showed (n;m; k; �)-PRF constructs (2n;m; k; �0)-PRP for
some �0, which implies that (n;m; k; �)-PRP can also construct (2n;m; k; �0)-
PRP for some �0 by regarding (n;m; k; �)-PRP as (n;m; k; �00)-PRF for some
�00. These results imply that pseudorandomness can be used as a important
measure of immunity against chosen plaintext attack even if the encrypting
functions (s-boxes) constructing block cipher are bijective.

In [S97], we showed one su�cient condition such that the basic transfor-
mations with recursive structures yield PRF, and proved that the (5; 3) and
the (5; 3; � � � ; 3)-round iterations of the basic transformations of MISTY (pro-
posed by Matsui in [Ma97]) satisfy this condition. They yield a PRF, while
(4; 3) and the (4; 3; � � � ; 3)-round iterations do not. In [S97-2], we showed
stronger su�cient condition for the basic transformations to be PRF, and
show that both the (5; 3; � � � ; 3)-round iteration of the basic transformations
of MISTY and the (4; 3; � � � ; 3)-round iteration of the basic transformations
of MISTY1 satisfy this condition, and as a result, yield PRF.

The block cipher E2 was proposed in [K98] as an AES candidate. This
cipher uses Feistel structures as a global structure like DES, and uses the
SPN(Substitution and Permutation Network)-structure in s-boxes. In this
paper, we apply our previous condition to SPN-structures and basic trans-
formations of E2, and show that this can be easily calculated by some matrix
calculation, and clarify that the linear transformation used in E2 o�ers good
pseudorandomness.

As another measure of the security for block ciphers, the maximum av-
erage of di�erential probability was de�ned by Nyberg and Knudsen by
generalizing provable security against linear and di�erential cryptanalysis
by Biham and Shamir [NK 94]. In this paper, we estimate the maximum
average of the di�erential probability of the SPN-structure. In [K98], they
state that this evaluation is practically impossible, but we show that this
can be calculated recursively by a novel but simple calculation and showed
that the linear transformation used in E2 has good property as it is used in
the SPN-structure.

This paper is organized as follows.
We describe the pseudorandomness of block ciphers in Section 2.
In section 3, we describe SPN-structures and block cipher E2.
In section 4, Applying our su�cient condition, we analyze the pseu-

dorandomness of the SPN-structure and E2-like transformations and show
that pseudorandomness can be easily evaluated by the matrix calculation
proposed herein, and clarify that the linear transformation used in E2 has
good pseudorandomness as it is used in the 4-round SPN-structures.

In section 5, we estimate the maximum average of the di�erential prob-
ability of the SPN-structure.



2 Preliminary

2.1 Notation

For s1; s2 2 f0; 1gn, s1 � s2 denotes the bit-wise XOR of s1 and s2. Fn

denotes the set of all functions from f0; 1gn to f0; 1gn. F n
Z denotes the set

of all functions from f0; 1gn to f0; 1gn with the key space Z.

2.2 Pseudorandom Functions Generator

In this subsection, pseudorandom function generator (PRFG) is de�ned. We
denote a random function r : f0; 1gn ! f0; 1gn as a function that assigns
to all arguments x 2 f0; 1gn independent and completely random values
r(x) 2 f0; 1gn. First we introduce a generalized random function for the
proof of pseudorandomness of the basic transformation constructing block
ciphers.

De�nition 1 A keyed function rz : f0; 1gn ! f0; 1gn(z 2 Z) with the key
space Z is a generalized random function if for every x1; x2 2 f0; 1gn(x1 6=
x2) and z1; z2 2 Z, rz1(x1) and rz2(x2) are random and jointly statistically
independent. As a special case, conventional random functions of Fn are
generalized random functions if regarded as functions with key space Z (In
this case, the output value is not depend on the key value z 2 Z.).

Next we introduce the condition �(n)-random for a random variable in order
to prove the pseudorandomness of the basic transformations of the block
ciphers.

De�nition 2 Let X be a random variable that takes on values x 2 f0; 1gn,
and (X;X) be a 2-dimensional random variable that takes on values (x1; x2) 2
(f0; 1gn)2.

We de�ne X as �(n)-random if for some event �, such that P (�) �
�(n), (X;X) takes values randomly over the complementary event �� =
(f0; 1gn)2 ��.

[LR86] de�ned the PRFG. In the following three de�nitions, we omit the
restriction on the function (which [LR86] denotes as distinguishing circuits)
because, in [M92], they showed that it is not essential in the proof and can
be omitted.

De�nition 3 (LR86) A family FZ = ffz : z 2 Zg of functions fz :
f0; 1gn ! f0; 1gm is an (n;m; k) pseudorandom function (PRF) with the
key space Z if for every subset fx1; :::; xkg of f0; 1gn, fz(x1); :::; fz(xk) are
uniformly distributed over f0; 1gm and are jointly statistically independent,
when z is randomly chosen from Z.

De�nition 4 (LR86) A family FZ = ffz : z 2 Zg of functions fz :
f0; 1gn ! f0; 1gm is an (n;m; k; �) pseudorandom function (PRF) with key
space Z if for all functions g : (f0; 1gm)k ! f0; 1g and for every subset
fx1; :::; xkg of f0; 1gn, for z randomly chosen from Z,

jP [g(fz(x1); :::; fz(xk)) = 1]� P [g(r1; :::; rk) = 1]j � �



where r1; :::; rk are independent and randomly chosen from f0; 1gm

De�nition 5 (LR86) A pseudorandom function generator (PRFG) with
the key length function l(n) and degree of local randomization k(n) is the
family

F = fFn
f0;1gl(n) : n 2 Ng;

where Fn
f0;1gl(n)

is an (n; n; k(n); �(n)) PRF with key space f0; 1gl(n) that is,

for every given argument and key computable in time polynomial in n, in-
dependent of the number of previous evaluations, where �(n) vanishes faster
than 1=Q(n) for every polynomial Q(n)

[LR86] de�ned a pseudorandom invertible permutation generator as a fam-
ily of permutations that is also a PRFG family, where the required security
property is to approximate, as closely as possible, a random function. How-
ever, in [BKR98], they use another model for PRP of [Sh49], where the
required security property is to approximate, as closely as possible, a ran-
dom permutation. They also state that the two models of security for PRP
are nearly the same when the number of encrypted blocks m is small, and
that PRF is a better tool than PRP, from two points of view: it permits
easier and more e�ective analysis of the designed scheme, and the resulting
schemes have a greater level of proven quantative security. This leads us
to suggest that for the purpose of protocol design, what we really want are
PRFs, not PRPs. Therefore, in the following three de�nitions for PRPs, we
use the models of [LR86].

De�nition 6 (LR86) A family FZ = ffz : z 2 Zg of permutations fz :
f0; 1gn ! f0; 1gn is an (n; k) pseudorandom permutation (PRP) with the
key space Z if for every subset fx1; :::; xkg of f0; 1gn, fz(x1); :::; fz(xk) are
uniformly distributed over f0; 1gn and are jointly statistically independent,
when z is randomly chosen from Z.

De�nition 7 (LR86) A family FZ = ffz : z 2 Zg of permutations fz :
f0; 1gn ! f0; 1gn is an (n; k; �) pseudorandom permutation (PRP) with the
key space Z if for all functions g : (f0; 1gn)k ! f0; 1g and for every subset
fx1; :::; xkg of f0; 1gn, for z is randomly chosen from Z,

jP [g(fz(x1); :::; fz(xk)) = 1]� P [g(r1; :::; rk) = 1]j � �

where r1; :::; rk are independent and randomly chosen from f0; 1gn

The existence of PRP under the assumption of the existence of PRF was
proved in [LR86] and [M92].

De�nition 8 (LR86) A pseudorandom permutation generator (PRPG) with
the key length function l(n) and degree of local randomization k(n) is the
family

F = fFn
f0;1gl(n) : n 2 Ng;



where Fn
f0;1gl(n)

is an (n; k(n); �(n)) PRP with key space f0; 1gl(n) that is for

every given argument and key computable in time polynomial in n, indepen-
dent of the number of previous evaluations, where �(n) vanishes faster than
1=Q(n) for every polynomial Q(n)

Note. The existence of PRPG under the assumption of the existence of
PRFG is proved in [LR86] and [M92].

3 Block Cipher E2

3.1 SPN-Structures [K98]

In [K98], SPN-Structures are de�ned. First we de�ne the 2-round SPN-
structure as in Fig.1.

bijective

P1 PmP2

linear round function P

C1 CmC2

First non-linear layer

First Linear layer

Second non-linear layer

K11 K12 K1mbijective bijective

bijective K21 K22 K2mbijective bijective

Figure 1: 2-round SPN-structure

This structure consists of two kinds of layers, i.e. non-linear layer and
bijective linear layer. Each layer has the following feature.

Non-linear layer: This layer is composed of m parallel n-bit bijective
s-boxes.

Linear layer: This layer is composed of bitwise XORs, where inputs
are transformed linearly to outputs per byte (n-bits).

[K98] introduces a matrix expression PE = faijg of linear round function
E, where aij = 1 means that the input of i-th s-box in second nonlinear
layer linearly depends on the output of j-th s-box in �rst nonlinear layer,
and aij = 0 means does not.

Next we de�ne the N -round SPN-structure as in Fig.2. This layer con-
sists of (2N � 1) layers. First is the nonlinear layer, second linear layer,
generally, i-th nonlinear layer (i = 1; � � � ; N � 1), and i-th linear layer
(i = 1; � � � ; N) in this order. Furthermore, for the functions f11; � � � ; fNm,
we denote N -round SPN-structures as SPNN;m(f11; f12; � � � ; fNm), where the
functions fij correspond to the bijection sij in Fig.2 (1 � i � N; 1 � j � m).
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Figure 2: n-round SPN-structure

3.2 E2-like transformations

[K98] proposed the block cipher E2. This cipher has Feistel structures and
its s-box is composed of the 2-round Feistel structures de�ned in the previous
subsection. Here we de�ne E2-like transformations as the Feistel structure
with s-box composed of N -round (in this case, 2-round) SPN-structures as
in Fig.3 . Furthermore, for the functions f111; � � � ; fsNm, we denote s-round
E2 like transformations as E2s;N;m(f111; f112; � � � ; fsNm), where the functions
fijk correspond to the bijection sjk in the i-th round s-box in Fig.2, Fig.3
(1 � i � s; 1 � j � N; 1 � k � m).

⊕

2-round
SPN-
structure

⊕⊕

2-round
SPN-
structure

2-round
SPN-
structure

Figure 3: E2-like transformations



4 Pseudorandomness of SPN-structure and block

cipher E2

4.1 Su�cient Condition for PRFG

In [S97] and [S97-2], we introduced e�ective su�cient conditions for the basic
transformation of block ciphers to yield PRFG, and proved that basic trans-
formations for MISTY(1) satisfy this condition for some round numbers,
where MISTY is the block cipher proposed in [Ma97]. This condition for
pseudorandomness can be applied to various types of block ciphers in AES
candidates with SPN-structures or Feistel structures, where SPN-structures
are used in CRYPTON, E2, LOKI97, MARS, RC6, RIJNDAEL, SAFER
and SERPENT, and Feistel structures are used in CAST-256, DEAL, DFC,
E2, LOKI97, MAGENTA.

Here we describe the condition in [S97-2].

De�nition 9 For a list of functions (oracle gates) f1; f2; � � � ; fs 2 F n, let
f =  (f1; f2; � � � ; fs) : (f0; 1gn)m ! (f0; 1gn)m be an acyclic circuit that
consists of nbit-and/nbit-or/nbit-not/nbit-xor, nbit-fan-out, fi(i = 1; 2; � � � ; s),
where f includes only one fi(i = 1; � � � ; s). fi appears only once in f . Let y1�
y2�� � ��ym 2 (f0; 1gn)m be an input of f , and let z1�z2�� � ��zm 2 (f0; 1gn)m

be an output of f which is de�ned by z1 � z2 � � � � � zm = f(y1 � y2 � � � � � ym).
Let IPfa 2 f0; 1g

n(a 2 f1; 2; � � � ; sg) be an input of fa in the circuit f when
the input of f is y1 � y2 � � � � � ym, let OPfa 2 f0; 1g

n be an output of fa i.e.
OPfa = fa(IPfa) when the input of f is y1 � y2 � � � � � ym.

Let y01 � y
0
2 � � � � � y

0
m 2 (f0; 1gn)m be another input of f , and let z01 � z

0
2 �

� � � � z0m 2 (f0; 1gn)m be an output of f which is de�ned by z01 � z
0
2 � � � � � z

0
m =

f(y01 � y
0
2 � � � � � y

0
m). Let IP 0

fa
2 f0; 1gn(a 2 f1; 2; � � � ; sg) be an input of fa

in the circuit f when the input of f is y01 �y
0
2 � � � � �y

0
m, let OP

0
fa
2 f0; 1gn be

an output of fa i.e. OP 0
fa

= fa(IP
0
fa
) when the input of f is y01 �y

0
2 � � � � �y

0
m.

Let Z be the key space.
We say  satis�es �(n)-condition 10 if and only if there exist (i1; i2; � � � ; im),

(j1; j2; � � � ; jm), ia; jb 2 f1; 2; � � � ; sg (a; b 2 f1; 2; � � � ;mg), that satisfy the
following 4 conditions (cf. Fig.4).
10.1) For every a; b 2 f1; 2; � � � ;mg, ia 6= ib(a 6= b), ja 6= jb(a 6= b), ia 6= jb.
10.2) When f1; f2; � � � ; fs 2 Fn, if y1 6= y01 then IPfi1 6= IP 0

fi1
, and for every

a 2 f2; � � � ; mg, if yl = y0l(l = 1; 2; � � � ; a�1) and ya 6= y0a then IPfia 6= IP 0
fia

.

10.3) For every a; b 2 f1; 2; � � � ;mg, if OPfia is random and f1; � � � ; fia�1; fia+1;
� � � ; fs are random functions of F n then IPfjb is �(n)-random, where we re-
gard OPfia and IPfjb as random variables. Also if OPfia is random and
f1; � � � ; fia�1; fia+1; � � � ; fs are generalized random functions (oracle gates)
of Fn

Z , then IPfjb is �(n)-random.
10.4) If OPfj1 ; OPfj2 ; � � � ; OPfjm are random and jointly statistically inde-
pendent, then z1 � z2 � � � � � zm is random.

This de�nition is essentially composed of three relations: 10.2) refers to
the relations between the inputs y1; � � � ; ym and the inputs ofm input-related
functions (oracle gates) fi1; � � � ; fim . 10.4) refers to the relations between
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Figure 4: De�nition of �(n)-condition 1'

the outputs z1; � � � ; zm and the outputs of m output-related functions (or-
acle gates) fj1 ; � � � ; fjm . 10.3) refers to the relations between the outputs
of m input-related functions (oracle gates) fi1 ; � � � ; fim and the inputs of m
output-related functions fj1 ; � � � ; fjm . This de�nition is a generalization of
the essence used in the proof of the pseudorandomness of DES-like transfor-
mation in [LR86].

The following lemma proves that the condition above implies PRFG.

Lemma 1 For a list of functions f1; f2; � � � ; fs 2 F n, let f =  (f1; f2; � � � ; fs)
: (f0; 1gn)m ! (f0; 1gn)m, be an acyclic circuit that consists of nbit-and/nbit-
or/nbit-not/nbit-xor, nbit-fan-out, oracle gates fi (i = 1; 2; � � � ; s), where f
includes only one fi(i = 1; � � � ; s). For every function g : ((f0; 1gn)m)k !
f0; 1g and for every set of k arguments x1; � � � ; xk, if f satis�es �(n)-condition
10, then we have

jP [g(f(x1); � � � ; f(xk)) = 1 : f 2R  n((F
n)s)]�Pgj � mk2(�(n)=2+ 2�n�1):

Proof. Let f1; f2; � � � ; fs be random oracle gates (functions) of Fn, let
f =  (f1; f2; � � � ; fs), let xl = y1l � y2l � � � � � yml 2 (f0; 1gn)m(1 � l � k), let
z1l � z2l � � � � � zml = f(xl)(1 � l � k), let (i1; i2; � � � ; im), (j1; j2; � � � ; jm) be
the index used in conditions 10.1)-10.4) in �(n)-condition 10, let IPfja l be an
input of fja when the input of f is xl, and let OPfja l be the output of fja
when the input of f is xl. We may, for the rest of the proof, assume without
loss of generality that xl, 1 � l � k, are distinct because of the same reason
as given in the Lemma 1 of [M 92].

For every a 2 f1; 2; � � � ;mg, let EIPfja
denote the events that IPfja1, � � �,

IPfjak are distinct, and let E be the event that for every a 2 f1; 2; � � � ;mg
EIPfja

occurs. If EIPfja
occurs, then OPfja1; OPfja2; � � � ; OPfjak are ran-

dom because fja is a random function. Thus if EIPfja
occurs for all a 2



f1; 2; � � � ;mg, f(x1); f(x2); � � � ; f(xk) are random because of 10.4) in �(n)-
condition 10, and thus f =  n(f1; f2; � � � ; fs) behaves precisely like a func-
tion chosen randomly from Fmn . Therefore the distinguishing probability
is upper bounded by

jP [g(f(x1); � � � ; f(xk)) = 1 : f 2R  ((F
n)m)]� Pgj � 1� P [E ]:

We now derive an upper bound on 1�P [E ] = P [ �E ], where �E denotes the

complementary event of E . �E is the union of the m

 
k
2

!
events fIPfjau =

IPfjavg for 1 � u < v � k, 1 � a � m. The probability of the union of
several events is upper bounded by the sum of the probabilities, and hence

1� P [E ] = P [ �E ] �
X

1�a�m

X
1�u<v�k

P [IPfjau = IPfjav]: (1)

For u 6= v we have

P [IPfjau = IPfjav] � �(n) + 2�n:

Note that xu 6= xv(u 6= v) means that there exists a 2 f1; 2; � � � ;mg, s.t.
y1u = y1v; � � � ; ya�1;u = ya�1;v; yau 6= yav, which means OPfiau and OPfiav
are independent and random from 10.2) of  because fia is a random func-
tion, which means that IPfjbu and IPfjbv are random and independent for
every b 2 f1; 2; � � � ; mg except for the case of the probability equaling or
being smaller than �(n), because IPfjb is �(n)-random from 10.3) in �(n)-
condition 10.

The total number of terms on the right side of (1) is

m

 
k
2

!
=
mk(k � 1)

2
�
mk2

2
:

Lemma 1 follows.

4.2 Pseudorandomness of SPN-structures and E2-like trans-
formations

For applying �(n)-condition 1 to the SPN-structures and E2-like transfor-
mations, we introduce the next matrix operation.

De�nition 10 Let m be a positive integer. For the m � m matrix over
GF (2) A = (aij); B = (bij)), we de�ne binary operation ? by A ? B =
(_mk=0(aik^bkj)), where _ represents binary operation \or", and ^ represents
binary operation \and".

Using this operation, we obtain the conditions under which the 3-round
SPN-structure to yields PRF.

Lemma 2 The 3-round SPN-structure with linear transformations A;B sat-
is�es 1=2n-condition 10 if all components of A ? B are 1.
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Figure 5: Pseudorandomness of 3-round SPN-structure

Proof. Let A = (aij); B = (bij) and A ? B = (cij), and we select
fi1 ; � � � ; fim ; fj1 ; � � � ; fjm as in Fig.5.

Then the condition that IPfjb depends on OPfia , is equivalent to cba = 1,
because, from the independence of g1; � � � ; gm, this condition is equivalent
to the condition that there exists gc such that IPfjb depends on OPgc and
IPgc depends on OPfia

Next we prove that the randomness of OPfib implies �(n)-randomness
of IPfjb when IPfjb depends on OPfia . If OPfia ; OP

0
fia

is random, the prob-
ability that a value on IPgc and a value on IP 0

gc are the same is 1=2
n. This

implies IPfjb is 1=2
n-random because of the randomness of gc and the inde-

pendence of g1; � � � ; gm. The lemma was proved.
This lemma can be easily generalized for the case of n-round SPN-

structures as follows.

Lemma 3 The s-round SPN-structure with linear transformations A1; A2;
� � � ; As�1 satis�es 1=2n-condition 10 if all components of A1 ?A2 ? � � � ?As�1

are 1.

Note. For the matrix P used as the linear transformation layer as in
[K98], all components of P?P are 1. This implies it can yield PRFG (PRPG)
with 3-rounds i.e. with only 24 cryptographic functions, whereas
MISTY(1)-like transformations need 45(36) cryptographic functions and re-
cursive Feistel structures need 27 cryptographic functions. This implies
that, in this case, the SPN-structures is more secure than (recursive) Feistel
structures in the viewpoint of pseudorandomness.

From this fact and lemma 1, we obtain the following theorem in the same
way as Theorem 1 of [LR86],

Theorem 1 Let Fij , for 1 � i � 3; 1 � j � 8 be 3 � 8 independent
(n; n; k; �ij) PRFs. Then the 3-round SPN-structures with linear trans-
formation of E2, SPN3;8(F11; � � � ;F38); is a (8n; 8n; k; �) PRF where � =
8k22�n +

P
1�i�3

P
1�j�8 �ij

This theorem indicates that the 3-round SPN-structures with linear
transformation of E2 are PRFG.



By the same argument, we can prove the next lemma.

Lemma 4 The 4-round E2-like transformation satis�es 1=2n-condition 10

Proof. This can be proved by regarding the �rst nonlinear layer in the �rst
s-box as fi1; � � � ; fim , �rst nonlinear layer in the second s-box as fim+1 ; � � � ; fi2m ,
second nonlinear layer in the last s-box and as fj1; � � � ; fjm, second nonlinear
layer in the 4-th s-box as fjm+1 ; � � � ; fj2m , as shown in Fig.6.

From this lemma and lemma 1, we obtain the following theorem in the
same way as Theorem 1 of [LR86],

Theorem 2 Let Fijk, for 1 � i � 4; 1 � j � 2; 1 � k � 8 be 4 � 2 �
8 independent (n; n; k; �ijk) PRFs. Then the 4-round E2-like transforma-
tions E24;2;8(F111; � � � ;F428) is a (16n; 16n; k; �) PRF where � = 16k22�n +P

1�i�4

P
1�j�2

P
1�k�8 �ijk

⊕⊕

fi1fim
fim+1fi2m

⊕⊕

fjm+1fj2m
fj1fjm

Figure 6: Pseudorandomness of E2-like transformation

This Theorem indicates that 4-round E2-like transformation are PRFG.

5 Maximum Average of Di�erential Probability of

SPN-Structures

In this section, we consider the maximum average of di�erential probability
of SPN-structures.

First we de�ne the di�erentials of block ciphers. We consider the encryp-
tion of a pair of distinct plaintexts by an r-round iterated cipher. Here the
round function Y = f(X;Z) is such that, for every round subkey Z, f( � ; Z)
establishes a one-to-one correspondence between the round input X and the
round output Y . Let the \di�erence" �X between two plain-texts (or two
cipher texts) X and X� be de�ned as

�X = X �X�:

From the pair of encryptions, one obtains the sequence of di�erences
�X(0);�X(1); � � � ;�X(r) where X(0) = X and X(0)� = X� denote the
plaintext pair (so that �X(0) = �X) and where X(i) and X�(i) for (0 <



i < r) are the outputs of the i-th round, which are also the inputs to the
(i+ 1)-th round. The subkey for the i-th round is denoted as Z(i).

Next we de�ne the i-th round di�erential and maximum average of dif-
ferential probabilities.

De�nition 11 (LM92) An i-round di�erential is the couple (�; �), where
� is the di�erential of a pair of distinct plaintexts X and X� and � is a
possible di�erence for the resulting i-th round outputs X(i) and X�(i). The
probability of an i-round di�erential (�; �) is the conditional probability that
� is the di�erence �X(i) of the cipher text pair after i rounds given that the
plaintext pair (X;X�) has di�erence �X = � when the plaintext X and the
subkeys Z(1); � � � ; Z(i) are independent and uniformly random. We denote
this di�erential probability by P (�X(i) = �j�X = �).

The probability of an s-round di�erential are known to be satisfying the
following properties.

Lemma 5 (NK94) The probability of an s-round di�erential equals

P (�X(s) = �(s)j�X(0) = �(0)) =X
�(1)

X
�(2)

� � �
X

�(s�1)

sY
i=1

P (�X(i) = �(i)j�X(i� 1) = �(i� 1)):

We de�ne the maximum average of di�erential probability as follows. This
value is known to be the best measure to ensure that the block ciphers are
secure against the di�erential attacks of block ciphers.

De�nition 12 (NK94) We de�ne the maximum average of di�erential

probability ADP
(s)
max by

ADP(s)
max = max�6=0;�P (�X(i) = �j�X = �):

Here we evaluate the maximum average of the di�erential probability in
the case of the SPN-structure, where we assume all random functions are
bijective. This value was considered to be too hard to evaluate in [K98], so
they used the another approximate measure to estimate the security against
di�erential attack. However, the following procedures suggest that this is
easy to evaluate.

First we de�ne the function ch : fGF (2)ngm ! GF (2)m; (x1; � � � ; xm) 7�!
(y1; � � � ; ym) by

yi =

(
0 if xi = 0
1 otherwise;

and we de�ne the function N(P; 
; �) for m � m matrix P and 
; � 2
GF (2)m by

N(P; 
; �) = #f(�X;�Y )j�Y = P�X; ch(�X) = 
; ch(�Y ) = �g:

The procedure of calculating the maximum average of the di�erential
probability in the case of the SPN-structure is as follows.



1) calculate N(P; 
; �) for every 
; � 2 GF (2)n. For this calculation we
de�ne semi-order � in GF (2)2m as follows.

a � b, (8i; (a(i) = 0) b(i) = 0)) ^ (a 6= b)

where we denote a(i); b(i) as the i-th signi�cant bit of a; b, respectively.

We de�ne

M(P; 
; �) = #f(�X;�Y )j�Y = P�X; ch(�X) � 
; ch(�Y ) � �g;

M(P; 
; �) can be easily calculated by simple rank calculation as fol-
lows.

M(P; 
; �) = 2

2m�rank(

 
A E
F (
; �)

!
)

� 1

where F (
; �) denotes the diagonal matrix whose (i; i) component
equals the i-th signi�cant bit of 
 for i = 1; � � � ;m, or the (i � m)-
th signi�cant bit of � for i = m+ 1; � � � ; 2m.

N(P; 
; �) can be calculated recursively, using the following relations.

N(P; 
; �) = M(P; 
; �)�
X


0�
;�0��

N(P; 
0; �0)

2) calculate

P1(�
0(1); �0(0)) = max

�(0); �(1);
ch(�(0)) = �0(0);
ch(�(1)) = �0(1)

P (�X(1) = �(1)j�X(0) = �(0))

for every �0(1); �0(0) 2 GF (2)m.

3) utilizing N(P; ch(�(i)); ch(�(i � 1))), calculate Pi(�
0(i); �0(i � 1)) re-

cursively for every �0(i); �0(i� 1) 2 GF (2)m.

Pi(�
0(i); �0(0)) =X

�(i�1)

max
��(i� 1); �(i);

ch(��(i� 1)) = ch(�(i� 1));
ch(�(i)) = �0(i)

P (�X(i) = �(i)j�X(i� 1) = ��(i� 1))

� Pi�1(ch(�(i� 1)); �0(0))

= (2n � 1) �X
�0(i�1)

max
�(i� 1); �(i);

ch(�(i� 1)) = �0(i� 1);
ch(�(i)) = �0(i)

P (�X(i) = �(i)j�X(i� 1) = �(i� 1))

� Pi�1(�
0(i� 1); �0(0))

= (2n � 1) �X
�0(i�1)

N(P; �0(i); �0(i� 1)) � ph(�
0(i))

max � Pi�1(�
0(i� 1); �0(0));

where pmax is the maximum average of the di�erential probability of
n-bit bijective s-boxes composing the non-linear layer.



By this procedure, we can exactly evaluate the maximum average of the
di�erential probability under the assumption P (�X(i) = �(i)jch(�X(i)) =
ch(�(i))) = 1=2n for any �(i) (We accept that is \impossible", but the above
has some validity as an ideal model.).

In the case of m = 8, we get

P (�X(i) = �(i)j�X(0) = �(0))

�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

255p5(for 2-round);
254p7 + 255p8 + p9(for 3-round);
p8 + 241p9 + 284p10 + 162p11 + 206p12 + 230p13 + 214p14 + 108p15

+222p16 + 73p17 + 193p18 + 206p19(for 4-round);
p8 + 154p9 + 217p10 + 25p11 + 240p12 + 113p13 + 185p14 + 77p15

+77p16 + 7p17 + 34p18 + 56p19 + 34p20 + 109p21 + 233p22 + 113p23

+175p24 + 25p25 + 171p26 + 226p27 + 121p28 + 89p29 + 87p30

+19p31 + 71p32 + 247p33(for 5-round);

by the computer, and this indicates

P (�X(i) = �(i)j�X(0) = �(0)) � 1=2n�1

for m(� 4)-round SPN-structures. This upper-bound is smaller than twice
the maximum average of the di�erential probability of the functions con-
structing the nonlinear layer.

Without the assumption, the estimation is not so e�ective, but this can
exactly evaluate the number of active s-boxes for all multiple passes. The
evaluation in this section suggests that SPN-structure is a good structure in
the viewpoint of immunity for di�erential attacks, even if we consider the
multiple paths.

6 Conclusion

This paper examined the pseudorandomness of SPN-structures and E2-like
transformations and showed that this characteristic can be easily calculated
by some matrix calculation. Moreover, we examined the maximum average
of the di�erential probability of the SPN-structure, and showed that this can
be calculated recursively by a simple calculation. In AES candidate, SPN-
structure is used in CRYPTON, E2, LOKI97, MARS, RC6, RIJNDAEL,
SAFER, SERPENT. We conclude SPN-structure is better in pseudoran-
domness, a little weaker (but su�ciently strong) in immunity for di�erential
attacks than (recursive) Feistel structures.
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